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While numerous articles have appeared in the literature which describe
the one-parameter logistic model .and its application in a tailored testing
setting, little or no research has been conducted on the op2rational
characteristic, of the procedure when program parameters and item pool
attributes are varied. The primary objective of this investigation was
to determine the effects of varying the program parameters, stepsize and
acceptance range, as well as the item pool attribut:s, size and shape, on
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the bias and standard error of thé maximum Ttretihood apt ity estimates—
obtained from tailored tests. Specifically, two main research questions
were iddressed. First, what values of stepsize and acceptance range
provided the least bias and smallest standard error of ability estimates?
The stepsize program parameter confrolled the magnitude of movement through
the item pool during the initial item selection phase of tailored testing.
Tie acceptance range program parameter specified how deviant the selected
item's difficulty value could be from the requested item difficulty and
still be~chosen for administration. Secondly, what shape and size of

item difficulty distribution provided the least bias and standard error

of ability estimates across the range of the latent trait? Two FORTRAN pro-
grams were used for investigating the effects of program parameters and item
pool attributes. Both programs took as input the stepsize, acceptance
range, item difficulty values for the various sizes and shapes of item
pools, and the trye abilities for which estimates were to be made. The
first program, TREE1P, produced the propensity distribution, the probability
distribution for observed ability estimates given.a true ability, ©, and
provided output of the E(0) and vVAR{n). The other program, SIMIP, was
developed to overcome the limitation on the size of item pool which could

be investigated at a reasonable_cost using the TREEIP program. The SIMIP
nrogram provided output of the X(() and S.D.(,) of ability estimates of ,
| a specified number of simulated tailored tests assuming a given ©. The

* results of the study were drawn from tables which summarized the output

'of the TREEIP and SIMIP programs. In addition to the recommendations
regarding the research questions stated above, an effort was made to discuss
the interaction of the variables of stepsize, acceptance range, item pool
size and the shape of the; distribution of item pool difficulties. Results
suggested that each of these variables played a substantial role in affect-
ing the magnitude of statistical bias and standard error at various points
along the ability continuum. The results were presented as a guide for
those involved in setting up a tailored testing procedure. The intent

was to provide figures and tables to facilitate applications of tailored
testing procedures such that a minimum of bias and standard error of ability
estimates could be attained.
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Failorad tosring, the selection and scaring of test items adminis-
tered in an.interactive fashion to individual examinees, has within the
rast Jecade vecome the spearhead for application of latent trait models
to achieveument and ability measurement. Theiavailability of improved
Computer technology nas contributed greatly fo the increase in the number
of systems presently in operation which administer tailored or adaptive
tests. It should be noted that tailored testing as presented here is
SYnonoous -1th many other assigned names suc§ as adaptive testing,
response contingent testing, or sequential tedting. Of the many proce-
dures available for tailored testing, one of those used at the University
of Missouri is based on the one-parameter logiStic model.

i1 12 numerous articles have appeared in the literature which describe
the one-parameter Togistic model and its application in a tailored test-
ing settiny (sec, for example, Peckase, 1974; Weiss, 1974 Patience, 1977),
little or no literature has been written discus§ing aperational character-
istics of tne tailored testing procedure when program parameters and item
pool attributes are varied. For this report, o \rationa] characteristics
refer to how well the tailored testing procedure\estimates a given true
ability. Program parameters refer to those program options (such as the
item selection rule) that must be selected before the program can operate,
[tem pool attributes refer to the size, distribuﬂion, and quality of the
item pool. The operational characteristi¢s, ite pool attributes, and
program parameters will be described in detail shortly.

ATthcugh ne Viterature was found which addressed the effects of vary-
PNG dorogran parameters, a few studies have appeared in the Jditerature
~nach investigated effects of item pool attributes on tne operation
ot tailored to<ting,  Jenseng (1975), for example, nas investigated the
influence ot iten pool size and item characteristics on a Bayesian tailored
testing procedure.  In qeneral, Jensema found that wnen items are of ade-
quate Jquality, 1t ig not necessary to have very large item pools. Reckase
(1976) concurrd with Jensema in recommending a rectangular distribution
Stodter nool ditficulty values. In this latter study, the tailored testing
brocedure was tawed on an empirical maxisum Tikelihood estimation of the
abiTity parameter of the simple logistic (Rasch) model. Issues worthy
of further investigation have surfaced in addition to item pool attributes,
g tee ot tocts of prograr paramneters on the bias and variance of
ity s ation,

SOVery i artecles nave appedred in the literature which use the phrase
LlaL ot oty barad testing ability estimation" to mean ~cedural bias
Lowdard sutgroups of an examinee population such as minc .ties (see, for
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example, Pine and Weiss, 1978)." The research reported here did not add-

ress this type of bias. Rather, ability estimate bias, as investigated

by this paper, was concerned with whether the expected values of the maxi-

mum 1ikelihood abi®ity estimates were equal to the known true ability.

In this sense, the atteupt was to identify values for the program para-

meters and the item pool characteristics which would provide the least

statistical .bias in ability estimation. The variance of ability estimates

was tne squared standard error of the ability estimates for a known true

abivity. The desire was to minimize this standard error, These two

dependent measures provided the criteria for Jjudging how well the tailored .
testing procedure estinated known abilities when the progran parameters

and iter: pool characteristics were vanied.

. Purgose

The priviary purpose of the research described herein was to deter-
mine the operaticnal characteristics of a one-parameter tailored testing
procedure when program parameters and item pool attributes were varied.
The program parameters investigated were the stepsize and acceptance
range. The stepsize parameter specified the magnitude of movement of the
ability estimate during the initial item selection phase of tailored
testing. -After the initial pnase, maximum likelihood ability estimation
was used. Tne acceptance range parameter determined how deviant the .
selected item's difficulty value could be from the requested item diffi-
culty and still be acceptable for administration, In the tailored test,
items were requested by the procedure to match the ability estimate computed
based on previous iten responses. The item pool attributes varied were

sizé, shape, and quality. Each of these variables will now be described
more specifically. ‘

ihg prerise of tailored testing is that when an examinee answers
Im ot correctly, the next item administered should be more difficult,
NG wher o ar examinee answers an item incorrectly, the next item should
re leis aifficult.  The stepsize program parameter initially controlled
e tucn roce difficult or easy was the next item administered. The
selection ut items was controlled by the fixed stepsize until the examinee
Ndd answered 1tens both correctly and incorrectly. After both a correct
and incorrect response had been obtained in the response string, a maxi-
mum likelihood ability estimate was obtained using an iterative search for
the mode of the likelihood distribution. For a more complete description
ot the item selection and ability estimation components of this maximum
I'kelihood tailored testing procedure see Patience (1977). In the past,
arbitrary values have generally been chosen for the stepsize. One of
tie privary godls of this research was to empirically investigate the
eftects ot stepsize values on the bias and standard error of ability esti-
mates.  Inoso deing, the intent was to determine the optimal stepsize
«alue whicn would minitize the bias and standard error of ability estimates.

The second program parameter investigated was the acceptance range.
the gcceptance range spocitied the amount of deviation in ditficulty an
af inistered item could have trom the requested item difficulty and stil]
Seoacceptable tor administration.  The acceptance ranye parameter monitored
Vheoaporopriateness of item, selected throughout the tailored-test, i.e

7



both during item sclection based on the fixed stepsize until both correct

and incorrect responses had been obtained, and also during item selec-

tion to maximize the information function for a maximum Tikelihood ability
estinate. If more than one item were within plus or minus the acceptance
range of the desired item, the item with a difficulty value nearest the
requested value was chosen. If no item were available from the pool within
the specitind accoptance range of the difficulty requested, the tailored
test was tervinated. The pririary aim regarding the acceptance range, tnen,
was to determine what value or range of values yielded the least bias

and standard error of ability estimates. Clearly, a small value for the
acceptance range would have insured that items very near the desired item
difficulty would be adwinistered. On the other hand, too small an accep-
tance range value would have increased the chance of premature termination
of the tailored test, which would have induced bias of the ability esti-
mate. It should be noted that both stepsize and acceptance range interact
with item pool attributes and, therefore, a choice of what values are
optimal may not be made assuiring independence of these controlling facters. -

The itenw pool attributes studied in this research included size, shape,
and quality. Sinulated item pools used in this investigation ranged in
size from nine to 181 items. Shapes of item pool distributions were normal,
rectangular, binodal, and skewed. Itenm pcul quality referred to the con-
trast between actual and idealized pools. Idealized paols consisted of
ttem difficulty parameters equally spaced from -3 to +3, ) '

Actual pools consisted of item difficulty values (minus one times
each of the iten easiness values) obtained from calibration runs using
the wright and Panchapakesan (1969) calibration program based on the Rasch
sodel. In these pools, items were not equally spaced on the difficulty
scale. (ne of the actual item pools contained 72 items while the other
had 130 items. The 72 item pool consisted of item difficulty parameter
estimates from the calibration of three vocabulary tests, This pool was
labeled VCIPL. The other pool was constructed using item difficulty para-
neter estirates from the calibrations of tests covering the evaluation
techniques portian of an introductory measurement and evaluation course,
This pool was labeled ETIPL. The distributions of item difficulty for
vCIPL and ETIPL were araphed and appear in Appendix A. It should be noted
tnat Tten woul attributes played a substantial role in the utility of
tne tailored “osting procedure. '

Prograr:s
Two FURTZAN programs were used for investigating effects of program
Ardticter, and item pool attributes. The input variables for both pro-

st included: a) acceptance range, b) stepsize, c) item pool size,
$) atem ditficulty values for the various sizes and shapes of item pools,

A e} the true abilities for a set of hypothetical examinees. Doth pro-

s oeutput the mean and standard deviation of the estimates of each

true ability provided.  These served as dependent reasures for determina-
Sorout tae quality ot estimation for the specific values of the acceptance
vArce, st aze s and dten pool parareter set.
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Tne first program, the TREEIP, was based on the concept of a propensity
distrivution.™ A propensity distribution in this context was defined as
the probaui]ity distribution for observed ability estimates given a true
avility, P(v]3) (Lord and Novick, 1968). The concept of a propensity
distribution was extended from its use in true score theory to the context
of latent trait ability estimation. The TREEIP program determined the
bropensity distribution for a yiven true ability, u, analytically from the
propertics of the tailored testing model.

orietly, tne TRELIP program operated as follows. Initially an item
of average difficulty was administered to the simulated examinee with
known truz ability. Based on the probability function for the simple
logistic niodel,

i eu(o - b)
; Pui} = . e(') " bT : (])

‘w

where . 1s the item score (0 or 1), b is the -item difficulty parameter,

and - is the ability parameter, the probability of a correct and the pro-
bability of an incorrect response were obtained. If the response were
correct, tne apility estimate was increased by the stepsize. If the response
were incorrect, the ability estimate was decreased by the stepsize. Thus
after one ite was administered, two paths or branches were present on

the "tree". (The tree diagram from probability theory was employed to
represent the propensity distribution in this study.) Based on these

first possible ability estimates, the closest items to each of the two
estinates was selected for administration with the constraint that the
difficulty of tne items must have been within plus or minus the acceptance
range from the present ability estimates. If no items were available,

that branch was terminated at that point. However, assuming items were
available, there existed four possible paths after the second item had

been administered. Ae=long as all correct or all incorrect responses

~era obtdained on a given patn, tne ability estimates continued to be increased
ar decreased, respectively, by the stepsize. However, when both a correct
ind an incorrect response were present on a particular path of the tree,

a maximum-1ikelihood ability estimation procedure obtained an ability esti-
mate using an iterative search for the mode of the likelihood distribution.

To partially illustrate how the propensity distribution was determined

2y the TRELIP, Fiqure 1 shows a diagram representirg the operation of the
procedure on a nine item rectangular pool. The stepsize used for this
11lustration was 1.0 and the acceptance range was 0.3. The 9 for this
analytical derivation of tne propensity distribution was set at zero.
As was pointed out above, the procedure began by administering an item
vt average difficulty from the pool, i.e., the item with the difficulty
parareter 0.0, The probability of a correct response, as determined by
e probability function qiven above for the simple logistic model, was
0.5 and the probability of an incorrect response was 0.5.

Arter g correct response the ability estimate was increased by the
Lecsrse e after an ancorrect response, 1t was decreased by the step-

T 1

T atter ane ater, the ability estirate was either 1.0 with

)



Figure 1

Procedural Operation of TREE1P

on a Nine Item Pool with

Stepsize = 1.0 and Acceptance Range = 0.3 -
[ten Probability ctstimate Probability Lstimate
Parameters  of Response  (Item Selected)  of Response  (Item Selected)
3.00
2.00
2.25 (2.25)
0.3
1.50
.00 4 0,68 0.375
0.75 0‘:19‘_‘,/ (0.75) - - * )
e -0.375
0.00=_____ ' ()
- , . -1.00 ,
-2.75 (-0.75) *
-1.50
. -2.00
-2.25 (-2.25)
-3.00
E(:) 0.0 0.0
S, 1.0 1.174

dote. The * indicates that no item was available in the pool within +
the acceptance range.

probavility of 0.5 or -1.0

with a probability of 0.5. This procedure was

followed so tnhat finite ability estimates would be available after each

item response, rather than

the + = value given by the maximum-1likelihood

procedure. The expected value of the distribution after one item was
0.0 and the <tandard deviation was 1.0.

“ased on these first possible ability estimates the closest items
were selected from the pool with the restriction that their difficulties

st have been within plus

or minus 0.3 of the requested difficulties.

Thus, as Figure 1 illustrates, items with parameter estimates of plus
and minus 0.75 were administered to the estimated abjlities plus and minus

1.00 respectively.  On the

upper branch of the tree, a correct response

vielded an ability estimate that was again increased by the stepsize,

since a maximum-1ikelihood

estimate could not be determined without both

d correct and incorrect response. Now, the ability estimate was 2.0.
The probability of this correct response to the item with the §.75 diffi-

culty parareter was 0.32.

cacept tor tho change in s

The bottom branch of the tree was the sare
qn of the item.parameters and ability

1
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estimates. dhpn the item pool distribution being considered was symmetric,
tne results of the analyses were the same above the zero point as below
the zero pownt except for the change in sign.

the item with diffiiculty 0.75 yielded an ability estimate of 0.375 from
the miaxirun-likel ihood—technique. The probability of this response was
0.68 bLased on the model, When the first item was missed and the second
answered correctly, the probability of the second response was also 0.68.
By the local independence assumption of the model, the probability of
either a + 2.0 estimate was 0.5 X 0.32 = 0.16 wh11e the probability of

+ 0.375 was 0.5 X 0.68 = 0.34. 1In this manner the propensity distribution
could be obtained after two items had been administered. As noted at

the bottom of Figure 1, the expected value was still 0.0 and the standard

- deviation (which was determined as the square root of the VAR(e)) was.
1.174,

Following tneyg;if]e branches of the tree, an incorrect response to

Tne tree developed further in this same manner whenever ijtems within
the acceptance range were available, If all correct or incorrect responses
were present, the fixed stepsize was used to make ability estimates.
unce a nixture of correct and incorrect responses was present, the maxi-
mum-1ikelihood ability estinate procedure was used. MNote the "branches"
of Figure 1 were "live" at + 2.00 ability estimate but no items existed

in the pool within + 0.3 of the ability estimate + 0.375. Therefore,
those branches terminated.

The tree continues to develop by following all “"live" paths. The
program is. finished after all branches are terminated by the condition
that ro items of appropriate difficulty are available in the pool. One
ray well iragine that as the number of items in the pool gets larger,
the procedure is, practically speaking, bounded by the storage capacity
of the computer facility and magnitude of one's computer budget. For
tne [uM 370/168 syster on which the TREETP program was run, it was found .
that sixty-one items was the practical upper limit on the number of iltems
the pool could contain for any particular run of the various combinations
of stepsize, acceptance range, and shape of the item difficulty distri-
bution,

Jue to the limitaticn on size of the iten pool which could te investi-
yated ~ith the TREEIP program, the second computer program, SIMIP, was
developed. 1his program was adapted from the tailored testing procedure
based on the Rasch model which was already operational. This particular
tailored testing procedure has bheen described thoroughly elsewhere (Reckase,
1574), so only the details pertinent to this research have been presented.
Tne SIMIP program followed only one path for any given o in contrast to
tre T#ELIP. A particular path was selected using Monte Carlo simulation
tecnniques, It provided for investigation of the properties of bias and
viriance of ability estimation with ruch larger item pools since the required

ctorage and computation were cubstantially reduced as compared to the
TREEYE progran, '

e tollowing vaiues erved a5 input to the program: the stepsize
acceptancy range, item pool ditticulty values, -, and number of simulated



tests tu be administered by the tailored testing procedure. The proce-

Sdure initially administered an item of average difficulty from the pool

of 1tems provided. If a correct response were obtained, the ability was
increased by the stepsize. " [f an incorrect response were obtained, the
ability was decreased by the stepsize. The appropriate item for the new
dauility was administered. This fixed stepsize up and down procedure—con-
tinued until both a correct and ingorrect answer had been obtained in the
response.string.  Then the procedure switched from the fixed stepsize
procedure to maximum-likelihood ability estimation. In both cases, items
were selected to maximize the item information (Birnbaum, 1968). Ability
estindtion was accomplished after each item was administered (provided
correct and incorrect responses had previously occurred) by the maximum-
Tikelihood estimation procedure using an iterative search for the mode

of the likelihood distribution. The items administered had to be within
plus or minus the acceptance range frem the requested item difficulty.

If no items were available within this range of the estimated ability,
the procedure stopped. The only other stopping rule was baced on a preset
maximum number of items that was to be administered.

T d

items were scored correct or incorrect by the SIMIP program utiliz-
ing an-internal random num - generator. First, the probability of a
correct response was computed using the formula for the probability func-
tion of the simple logistic mode! stated earlier. The 6 for this computation
@as tne true 1 that was input into the program, and the difficulty para-
ileter, b, was that of the item just administered to the simulated examinee.
nfter this probability of a correct response had been determined, the -
randor nuimber generator selected a number between zero and one from a
rectangular distribution. If this randomly selected number was less than
or equal o the probability of a correct response, the item was scored
correct. [Ir the randomly selected number was greater than the probability
of a correct response, the item was scored as incorrect. An ability esti-
Mate was then obtained and th- next item to be administered was selected
to maximize information for this estimated ability. This procedure continued
until one of tne stopping rules was encountered.

The iajor controlling program parameters for both the TREE1P and
SIMIP were tihe stepsize and acceptance range values., The stepsize para-
meter controlled how quickly the procedure would move through the item
pool while the acceptance range parameter specified how discrepant “tems
could ve trow those desired and still be administered. The acceptaace
range also indirectly determined the number of items from the pool which
serae avalrlable for administration. Clearly, the wider was the acceptance
"ange, the o greater was the number of iters that could have been chosen
tor administration.

Tre TRECTF and SIMIP preoarams used in this study for determining

the optaral stepsize, acceptance range, item pool size, and item pool
dratrioution were similar in that both output the mean and standard devia-
Yron ot abality estiwated for each true - input. However, they differed
thothe anner in owhich the mean and standard deviation were determined.

«tiTe the TRELTP pursued all possible paths through the item pool, the
5ot tollowed only the path that was the result of the simulated inter-
tztion of an examinee with the tailored testing procedure. The mean and

P
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standard deviation from the TREETP were actually expected values and square
roots ot variance computed from probabilities arising from the one-parameter
model and ability estimates arising from the maximum-1ikelihood estimation
techniqug, The SIMIP program provided a mean and standard deviation of

thp set of ability estimates obtained for each of the o's spec1f1ed

Research Design

To investigate the optimal stepsize, acceptance range, item pool
size, and iter: pool shape, nearly all possible combinations of the follow-
ing were input into the TRELIP and SIMIP programs for true abilities -3,
-2, -1, 0, 1, 2, and 3. The stepsize values used were .3, .4, .5, .6,
.693, .8, .9, 1.0, 1.5, 2.0, and 3.0, while acceptance-ranges were .1,
2y .3, .4, and 5. TItem pool sizes were 9,13, 25, 31, 61, 72, 180,
and 181. Item pool shapes investigated were normal, rectangular, bimodal,
and skewed, with difficulty values constrained between plus and minus
three. Idealized item pools (difficulty values in the above shapes with
spacing. dependent on shape and size of item pool) were constructed and
used as input to the programs, as well as actual item pools (test items
calibrated and formed into pools with no constraint on the spacing along
the difficulty scale).

Tne 1anner in which item pool size effects were investigated using
simulations was to run the TREETP and SIMIP programs on the various sized
pools wentioned above. With the resulting data, plots and projections
were made to estimate the item poo]l sizes needed for various accuracies
of ability estimation. The relationships between the item pool size,
bias, and the standard deviation were determined.

The comparisons to determine the optimal combination of independent ' .

variables were based upon the wean and standard deviation of twenty-five
sinulated administrations of a tailored test to each 6 using the SIMIP;
wnere tor the TREETP program, the comparisons were of the expected va]ue

of -, U( ), and the standard deviation of #, vVar{n). Values of these
Jependent variables were conmpared across progran runs using various sized
item pools, nholding stepsize and acceptance range constant. They were also
coiipared frorm runs using various shapes of item pools, holding size of

1tem pool, stepsize, and acceptance range fixed. Additiona]]y, compari -
sons were rade of the dependent variables, first varying stepsize with

all gtner variables fixed, and then varying the value of the acceptance
range while holding all other variables canstant. Since the TREEIP pro-
aral was consitered to yield the most accurate vslues, 1.e. E(») and
Var(" ) based upon the propensity distribution, another comparison was
weevied diportant,  Because . the SIMIP means and standard deviations were
wbject to sample variation, they were validated against values of the
TREETP for various runs on the sixty-one item pool. Also, the number
toesticiates of the true ability, i.e. the aumber of tailored tests admin-
Istered to cacn sirulated examinee by the SIMIP program, was varied. Tnhis
~vd> Jdone to check whether an appropriate nuwrber of administrations had

Deery e
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Results

The' results of this study were to a great extent drawn from tables
which summar o the result. of the TKEETP and SIMIP programs..  One issue
to be “investigated was the type of distribution of item paol difficulty
parameters that yielded the least bias and standard error of ability
estimates across the range of ability from -3 to +3. Another important
yuestion was how large an item pool was necessary to accomplish the goal
of accurate ability estimation, Thirdly, a determination of the preferred
nagnitude of the stepsize parameter was desired. The fourth outcome of
this study was to decide upon the approximate value of the acceptance
.range -program parameter which would provide ability estimates with the

least bias and standard error. These were the primary targets of the
study. ‘

Secondary goals of the study included a comparison of the performance
of actual versus ideal item pools. Another secondary objective was to
compare the results of the TREEIP and SIM]P programs. In this regard,
-two concerns .were investigated. One pertained to how close the SIMIP
estimates of the means and standard deviations of ability were to the
E(s) and »Var{%) determined by the TREEIP. The importance of this par-
ticular concern related to how well the SIM]P analyses on larger item
pools provided accurate data on the primary questions of this Study.

It should be recalled that the motivation for development of the SIMIP
program was to investigate the research questions of the study on larger
iten pools than the TREEIP program would realistically accommodate. The
second concern subsumed under comparison of the TREETP and SIMIP programs
was to decide whether or not 25 estimates of each ability by the SIMIP

was an adequate number. Several analyses were run using the SIMIpP progranm
on various item pools from which data had already been obtained from the
TREETIP. By running the SIMIP on these pools and holding all other variables
fixed except the number of test administrations, data were obtained per-
taining to the adequacy of the SIMIP estimates of the means and standard
deviations. Another matter along this same line was investigated with
runs of the SIMIP on some of the larger pools. This was the question

of wiether or not 20 itens was an adequate upper limit on the number of
iters administered by the tailored test.

thei Fool Siape
e TRELTP proarar (propensity distribution technique) was used to
evaluate tae effects of varying the shape of the item pool difficulty
distrivution on ability estiration. Four shapes of item pools were studied:
rectangular, noruial, birodal and skewed. The rectangular item pools were
oetaimed sinly by selecting equally spaced items between +3.0 and -3.0
inclusive.  Tae normal item pools were constructed such that tie 1tems
were equally spaced in probability. That is, the area between item posi-
FIons s kept constant in tone range from +3.0 to -3.0 standard deviation
IS tne norwal distrivution.  This procedure for producing the normally
distriouted pools had the offect of selecting more items around the diffi-
walty value of zero and fewer 1tens at the extremes. A similar procedure
Pan selecting the dtem parameters for the bimodal pools as was

LYY I I R O
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used for selecting the ncrmal pools. The negative half of the pool was
centered around -.693 and the area under the normal distribution was used
to place items around this point up to zero and down to -3.0. The same .
was true for the positive half of “the pool. The reason +.693 were chosen -
as the two modes of the bimodal distribution was that, prior to the con-
. struction ot a himodal pool, .693 had appeared promising as a stepsize
value. Therefore, after the first item was administered at 0, the step-
»ize of 693 would move the abiility estimate out to one of the more dense
regions of the pool depending upon whether the examinee correctly or incor-
rectly ansuered tne first itew. The skewel item pool distribution of item
parameters was constructed via a similar procedure to that for the normal
and bimodal pools. That is, the items divided the distribution into equal
areds.  For the skewed pool, tables of tiie Pearson Type III distribution
Jere used.  Tne pool constructed was positively skewed (skewness = .5).
[t snculd ve noted that in the tables included in this report, a skewed
distribution always indicates a positive skew. However, the results would
generalize to negatively skewed pocls.

<esuits concerning the shape of the item pool distribution may be
seer an Tacles 1-6 for different conbinations of values of the other var-
1ables.  cowever, Tables 1 and 2 point out the more general trends of the
1tem distribution study. In Table 1 the comparisons of the normal and
rectangular pools of 25 items are shown for only acceptance ranges of 0.1
and 0.3 when paired with stepsizes of 0.5 and 0.7 respectively. These
values of acceptance range and stepsize were chosen because they appeared
to yield sowe of the least bias and least variance estimates. Specifically,
the acceptance range of 0.1 was chosen to check whether the more dense
1ter: parameters near the middle of the normal distribution would make the
use of the sraller acceptance range desirable.

Table 1
Corparison of TREE1P Results from
25 item Rectangular and Normal Item Distributions

Ability Level

acceptance Lt D1 teibution
MANGe - O e Hnape

n.0 0.5 1.0 2.0 3.0

) st S EC) s, L) s, E() s,

RS S 0,001 0,91 0,470 0.927 0.944 0,943 1.893 0.968 2.764 0.884
K -0.0045 0,951 0,527 (0.904 0,930 0.762 1.468 0.426 1.555 0.25]

Doy i 0,013 0,787 0,430 0.824 0.911 0.893 1.986 0.984 2.933 0.773
g 0,000 0.9 0,623 0,922 1.169 0.821 1.877 0.491 2.093 0.231

crrohe eenctror fab e By the nental o distribution gppears to be
vRer oo to e yectangalbar dter distrbation in almost all cases.  Lxcept
Cone T aceeptance ranae data at 005 and 1.9 ability Tevels, either

I.
D)
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oot s L aaie e from the true v oor the standard devia-
L L N R R T interesting to note that even the estimates

1oyl oot qood tor the normally distributed pool as for
e e tan ol ol v UVer thouyh more items are present for estimation
uboaba bt ot s s e tha T napmal ponl,
Table 2

-+ '+ Las s and Standard Deviations
“roo RUELP on Various Shaped Item Pools

Ability Level

] 2 3
E(e) S

(o) s, E(0) s, )

NG SRR 15 B DY S

1.256  0.373 2.267 0.693 ©2.840 0.543

Do co dohs 1285 0,876 2,281 0,688 2.852 (.525

oo T 0 AL 1,008 0.677 2.138 0.805 3.111 0.566

S e Ih 1,282 0.858 2.257 0.670 2.80] 0.561

2aols with 61 items with the stepsize and accep-

Crm barameters set at 0.693.and 0.30 respectively.
sotlities were presented since the results are

o b sora cxcept for the skewed pool,

oo cted values and standard -deviations from the
v ', rectangular, and positively .skewed pools,
Fito7 cidty-one items. The stepsize was fixed at 0.693,
NI . v o1 held at 0.30 for all runs, Again the rec-
R . Tttt oaverall than did the other shapes of item
SRR Pur true abilities zero and one, the standard
tiee, as well as the bias of the estimates, was
» u~ing the rectangular pool. At the ability levels
tailar pool yielded estimates with Jess bias
farcor standard deviations than the other

Lo TRELTP would have been the same for
it antinuum when the pools were symmetric.
o waiues of ability were run for the normal ,
o ool Lo However, for the skewed poo] containing
: vility values of -1, -2, and -3 were run
Crmeersoas were indicated in Table 2. The results
R -1.189 and Sq = 0.836. For -2, the
tor -3, the E(-) = -2,935 and Sq = 0.577.
2t 0ol as being better suited for ability
Veioneyosince 1t contained more itens around
coifer than the rectangular pool.
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Iten Pool Size

The criteria for judging how large an item pool was needed for good
ability estimation using the tailored testing procedure were again the
bias and standard error of ability estimates. The results of the simu-
lations using both the TRE&IP and SIMIP programs have been condensed,
and the general trend has been illustrated in Figure 2. Thg values of
the £( ) and S, which have been plotted -for item pools of size 9, 13,

25, 31, and 61 were obtained from the TREE1P. Each of these pools had

a rectangular distribution of item difficulty parameters. The means and

standard deviations of ability estimates on the SIMIP runs on VCIPL and .
ETIPL (described earlier) have been included in the plots of~F1gure 2.

Each analysis represented in this figure had 6 set equal to 1.0, the step-

size fixed at 0.693, and acceptance range equal to 0.30.

The top grapt of Figure 2 illustrates that as item pool size reaches
61 for this particular set of analyses, the E(6) is equal to 6. The bias
of the ability estimates is essentially zero. The bottom graph of Figure
2 shows that as item pool size increases, the standard error decreases.
while these plots should be considered as rough approximations of the
relationship between item pool size and ability estimate bias and stan-
dard error, the indication appears <o be that with a uniform distribution
of item difficulty, o = 1, and the programn parameters equal to the values
used here, one could ~xpect very little bias and a standard error of about
0.3 with an 1tem pool consisting of around 200 items. More will be presented
on iten pool size in the discussion section of this report.

Stepsize

The results of the study of the preferred magnitude of the stepsize
program parameter may be seen in Tables 3, 4, 5, and 7. Tables 3, 4, and
5 give the E(3) and S, from TREE1P analyses of ¢ = 0, 1, 2, and 3 using
iten. pools of size 9, 13, 25, 31, and 61 for the rectangular, normal, and
bimodal distributions of item difficulty parameters, respectively. Table
7 presents tho results of the SIMIP analyses on the ETIPL item pool for

= -3, ~c. -1, 0, 1, 2, and 3. HNegative ¢ values are not shown in Tables
3,4, and » since the results of the TREEIP on the pools used are the
same as for the pesitive v values except for the change of sign. - This
vas espected since the item pool distributions of item difficulty are
sytwetric around zero. The acceptance range for all analyses for Tables
3, 4, and 5 was 0.30. for the SIMIP analyses of the ETIPL, a substantially
farger item pool, a smaller acceptance range, 0.25, was used as is noted
at the bottom of Table 7. Another variable recorded in Table 7 is the
edn number of items administered for the 25 tests simulated by the SIMIP
for each ability level. The maximum number of items per simulated test
wds 20 tor these SIMIP analyses.

[n general, results presented in Tables 3, 4, and 5 suugest that
stepsizes between 0.5 and 1.0 give fairly unbiased estimates, and also
nave the smallest standard errors. Llarger stepsizes tend to have a posi-
tive t1as and larger standard errvors,  [rom several qraphs like the ones
cresented an Figure 3, tae stensize value of 0,693 appears to he the best
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) | '.l Figure 2
Relationship Between Item Pool Size
and the E(») and S0
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ble 3

Expected Values and Standard Deviations
from TREETP on Rectangular Item Pools

Varying Pool Size, Stepsize and Ability Level

Pool Size Stepsize

Ability Level

E(6) 0 E(») S0 E(e) Se E(o) o
0.5. '-0.000 0.645 0.405 0.603 0.709 0.482 0.877 0.335
9 0.693 -0.001 1.025 0.756 1.113 1.593 1,217 2.388 1.139
1.0 -0.001 1.155 0.821 1.213 1.685 1.298 2.548 1.286
1.5 -0.001 1.182 0.934 1.268 1.966 1.439 3,016 1.423
0.5 -0.001 0.765 0.655 0.937 1.577 1.219 2.599 1,201
13 0.693 -0.001 0.976 0.733 1.056 1.587 1.217 2.454 1.168
1.0 -0.001 1.187 1.037 1.150 1.995 1.085 2.822 1.005
1.5 -0.006 1.125 0.899 1.249 1.960 1.463 3,045 1.424
0.25 -0.001 0.547 0.584 0.809 1.606 1.200 2.783 1.190
0.5 -0.001 0,736 0.857 0.842 1.933 1.000 2.964 0.809
0.6 0.001 0.744 0.896 0.888 1.986 1.004 2.955 0.788
0.693 -0.013 0.786 0.910 0.892 1.984 0.980 2.925 0.765
25 0.8 -0.013 0.801 0.931 0.934 2.047 1.042 3.0450.845
0.9 -0.001 0.845 0.996 0.895 2.061 0.972 2.996 0.784
1.0 -0.001 0.829 0.990 0.901 2.099 1.036 3.135 0.867
1.5 -0.001 0.972 1.109 1.086 2.318 1.221 3.389 1.040
1.7 -0.001 1.473 1,329 1.417 2.477 1.116 3.143 0.614
2.0 -0.001 1.551 1.389 1.553 2.673 1.348 3.535 0.846
3.0 -0.007 1.555 1.361 1,741 2.863 1.930 4.248 1.750
0.5 0.004 0.726 0.949 0.788 2.022 0.902 3.018 0.725
31 0.693 -0.003 0.742 0.973 0.826 2.068 0.907 2.997 0.672
1.0 -0.003 0.776 1.009 0.866 2.140 0.995 3.183 0.817
1.5 -0.005 0.925 1.116 1,050 2.002 1.388 3.382 1.023
0.5 -0.001 0.598 0.989 0.657 2.116 0.804 3.133 0.593
b1 0.693 -0.001 0.610 1,008 0.677 2.138 0.805 3.111 0.566
1.0 -0.000 0.641 1.039 0.745 2.229 0.915 3.239 0.689
1.5 -0.001 0.734 1.100 0.894 3.560 0.899 3.560 0.899

Hote.

Acceptance Ranae = 0.30



Fool “1ze Stepsize ] 2 3
E(-) S, E(e) 5o  E(e) S, E(e) S
0.5 -0.001 1.018 0.848 0.847 1.318 0.491 1.463 0.226
) 0.693  -0.001 1.098 0.960 0.966 1.601 0.655 1.898 0.382
1.9 -0.001 1.269 0.880 1.084 1.641 0.632 1.877 0.334
1.5 0.000 1.500 0.693 1.330 1.142 0.972 1.358 0.638
0.5 ~0.001 1.028 1.062 0.866 1.697 0.514 1.922 0.237
13 0.693  -0.001 1.101 1.002 0.942 1.648 0.628 1.932 0.358
1.0 -0.000 1.273 1.146 1,020 1.760 0.548 1.946 0.231
1.5 -0.001 1.439 1.272 1.282 2.219 1.188 3.031 1.258
0.25 -0.001 0.847 1.110 0.858 1.969 0.576 2.210 0.408
0.5 -0.001 0.891 1.184 0.837 2.016 0.572 2.359 0.278
0.6 -0.001 0.980 1.203 0.847 1.965 0.528 2.263 0.266
0.693  -0.000 0.956 1.174 0.811 1.871 0.482 2.079 0.227
25 0.8 -0.001 1.009 1.234 0.871 2.004 0.539 2.292 0.253
0.9 -0.001 1.052 1.290 0.964 2.223 0,784 2.818 0.658
1.0 -0.001 1.055 1.295 0.979 2.263 0.858 2.949 0.820
1.5 -0.001 1.327 1.384 1.186 2.394 1.070 3.167 1.114
1.7 -0.001 1.536 1.521 1.363 2.549 0.968 3.047 0.628
2.0 -0.001 1.738 1.653 1.600 2.845 1.248 3.492 0.884
3.0 -0.001 1.792 1.627 1.749 2.928 1.814 4.045 1.883
0.5 -0.000 0.869 1.218 0.805 2.046 0.557 2.385 0.277
31 0.633  -0.001 0.964 1.268 0.880.2.192 0.734 2.778 0.607
1.0 -0.001 1.018 1.323 0.951 2.300 0.823 2.969 0.787
1.5 -0.001 1.301 1.404 1.155 2.410 1,043 3.176 1.092
0.5 -0.000 0.753 1.201 0.797 2.132 0.541 2.465 0.254
v N.693  -0.000 0.866 1.256 0.873 2.267 0.693 2.840 0.543
1.0 -0.000 0.915 1.298 0.944 2.361 0,774 3.010 0.711
1.5 -0.000 1.232 1.399 1.141 2.473 1.004 3.227 1.044

LR T VI
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Table 4 :
txpected Values and Standard Deviations

from TREEIP on Normal Item Pools
Varying Pool Size, Stepsize and Ability Level

Agglity Level

acceptance Ranee = 0,30

'l
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Table 5 .
Expected Values and Standard Deviations
from TREETP on Bimodal Item Pools
Varying Pool Size, Stepsize and Ability Level

Ability Level

Pool Size Stepsize o ¥ ] 2 3
E(o) S9 E(e) S6 E(o) S0 E(e) Se

0.5 -0.004 1.020 0.231 0.443 1.312 0.495 1.473 0.245

9 0.693 -0.004 1.095 0.951 0.968 1.601 0.666 1,903 0.383
1.0 -0.001 1.264 1.036 1.042 1.639 0.628 1.876 0.331

1.5 -0.001 1.442 1,216 1,326 2.187 1.252 3.027 1.291

0.5 -0.001 1.006 1.009 0.903 1.671 0.579 1.917 0.275

13 0.693 -0.001 1.104 1.001 0.945 1.647 0.630 1.932 0.358
1.0 -0.000 1.267 1.143 1.011 1.754 0.551 1.946 0.238

1.5 -0.000 1.436 1.274 1.276 2.217 1.181 3.029 1.252

0.25 -0.000 0.920 1.102 0.855 2.001 0.623 2.264 0.42]

0.5 -0.001 0.870 1.152 0.867 2.024 0.594 2.,373°0.278

0.6 ~0.001 0.951°1.173 0.875 1.976 0,536 2.271 0.242

0.693 -0.001 0.964 1,207 0.933 2.174 0.768 2.774 0.612

25 0.8 -0.001 0.953 1.183 0.887 2.020 0.589 2.335 0.272
0.9 -0.002 1.025 1.260 0.994 2.246 0.780 2.833 0.631

1.0 -0.001 1.017 1.257 1.002 2.280 0.860 2.969 0.791

1.5 -0.001 1.294 1.350 1.192 2.396 1,064 3.176 1.091

1.7 0.002 1.491 1.483 1.362.2.543 4.959 3,047 0.612

2.0 -0.000 1.717 1.609 1.592 2.831°1.235 3.485 0.871

3.0 -0.001 1.761 1.601 1.763 2.953 1.803 4.070 1.857

0.5 -0.000 0.796 1.145 0.816 2.060 0.621 2.476 0.406

31 0.693 -0.000 0.924 1.229 0.912 2.218 0.741 2.814 0.585
1.0 -0.000 0.957 1.262 0.956 2.298 0.832 3.004 0.758

1.5 -0.002 0.968 1.284 1,049 2.446 1.080 3.338 1.015

0.5 0.006 0.726 1.174 0.800 2.246 0.692 2.903 0.572

61 0.693 -0.000 0.857 1.245 0.876 2.281 0.688 2.852 0.525
1.0 0.033°0.867 1.221 0.897 2.356 0.820 3.107 0.714

1.5 0.185 1.128 1.249 1.003 2.497 1.050 3.407 0.949

e - —— —— i d—

#ote, Acceptance Range = C,30
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Means and Standard Deviations
from SIMIP on a Bimodal and
Skewed Item Pool Varying
Number of Test Administrations

Shape of Pool

Humber of Tests

) Administered Bimodal Skewed
3] SO xf) SO
l 25 2.207 0.627 2.193  0.622
v 50 2.242 0.634 2.225 0.627
75 - 2.262  0.645 2.216  0.603

Note. A1l runs made with 20 item upper limit, stepsize
= .693, and acceptance range = 0.30. The true

ability was set at 2.0. Both the pools had 61
itens.

Table 7
Means and Standard Deviations
from SIATP on ETIPL Item Poo]
Varying Stepsize

Ability Level

stepsize
-3 -2 =1 0 ] 2 3
X -2.886 -2.145 -0.992 -0.050 1.135 1.991 .331
. S 0.715 0.728 0.486 0.534 0.502 0.627 .788
nir 13,04 15.88 19.24 20.00 20.00 19.84 .40
X -2.779  -2,230 -1.132 0.129 0.952 2.009 .972
S 0.491 0.68] 0.550 0.461 0.374 0.515 .857
Mna= 12.24 13.96 19.68 20.00 20.00 19.76 .24
X - =3.157 -2.139 -1.134 0.064 1.018 2.055 213
.3 S, 0.652 0.645 0.800 0.503 "0.363 0.516 .844
mix 10,04 14,48 18.56 20.00 19.92 19.56 .08
v -3.168  -2.250  -1.052 0.001 1.070 1.987 .910
; S 0.611 0.782 0.547 0.518 0.444 0.531 .554
Mo % 9.56 17.04 19.24 20.00 20.00 19.48 .12
; =2.762  -2,096 -1.,122 -0.070 1.136 2.076 .053
5 N 0.539 0.619 0.700 0.539 0.562 0.548 .718
Mnix 9.20 14,72 18.12 20.00 20.00 19.40 .28
wtee ALY runs dsade with 25 administrations per ability level, 20 item upper
liiit, and acceptance range = .25,
*n7 omean number of items administered.
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Table 7 (Cont.)
Means and Standard Deviations
from SIMIP on ET1PL Item Pool
Varying Stepsize

Ability Level

Stepsige - _ .-
-3 -2 -1 C 1 2 3
X -3.061 -2.175 -1.026 -0.065 1.029 1.950 2.913
/ ﬁg 0.561 0.460 0.573 0.469 0.516 0.696 0.533
Mni* 7

.80 13.12 18.92 20.00 20.00 19.16 15.92

Xy -3.134 -2.271  -1.24] 0.094 0.959 2.029 3.310
.9 Su 0.499 0.790 0.898 0.419 0.380 0.531  0.799
Ani* 5,92 11.40 16.96 20.00 19.84 19.20 13.28

Xy -3.739 -2.501 -1.389 0.101 1.035 2.437 3.239
1.5 S 0.876 0.961 0.910 0.598 0.792 1.118 1.010

Mni* 5,32 10.80 18.04 20.00 19.32 16.16 12.72

X, -3.683 -2.972 -1.482 -0.329 1.100 2.032 3.631

2.0 S 0.514 1.044 1.194 . 1.175 0.450 0.913 1.345
Mni* 4,24 8.76 16.56 18.56 19.96 18.48 13.36
X, -4.530 -2.942 -1.751 -0.042 1.230 2.511 4.471
3.0 S 1.591 1.494 1.916.. 0.465 - 1.1V7 1.556 1.519
Mni*  5.04 10.68 16.52 20,00 19.28 17.04 8.60

Note. A1l runs made with 25 administrations per ability level, 20 item upper
~limit, and acceptance range = .25.
*ni = mean number of items administered

overall compromise value which achieves less bias while holding the stan-

dard error down. Figure 3 shows the E(s) and Sy for the 31 item rectangular,

normal and bimodal pools when # = 1.0 and the acceptance range equals
0.30 for various stepsizes.

Table 7, which reports the results of the SIMIP on the ET1PL pool,
presents information that suggests a stepsize between 0.4 and 0.7 yields
less bias and a smaller standard error, It should be recalled that the
SIMIP is subject to sample variation, but in general, the results seem
to suggest that a stepsize of about 0.7 is appropriate. However, a trend
which snould be investigated further is that larger item pools seem to
Jdo better with smaller stepsizes and conversely.

Acceptance Range
The results of the acceptance range study are given in Tables 8,
9, and 10. Table 8 presents the [(+) and Sy for stepsizes 0.5, 0.693,

1.0, and 1.%; acceptance ranges 0.1, 0.2, 0.3, and 0.4; and ability levels
1.0, 1.0, 2.0, and 3.0 from TREEIP analyses. All of the results in Table

23
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8 are based on the 25 item rectangular pool. From Table 8 it can be seen
that in most cases, as the acceptance range increases, the standard devia-
tion decreases. This is a reasonable result since more items are available
for administration with a larger acceptance range. However, there is

also a trend of increased bias in estimate as the acceptance range increases,
particujar1y at the higher ability levels and for the larger stepsizes.

Tab1e™9 shows the results of the SIMIP on the VCIPL pool using 25
test administrations per ability level; 20 item upper limit; stepsize
= .693; and » = -3, -2, -1, 0, 1, 2, and 3. The mean number of items
is also indicated. These results indicate that an acceptance range of
0.30 is probably the best compromise value for minimizing bias and stan-
dard error of ability estimates across the range of 6. Table 10 shows
the results of the SIMIP on the ETIPL pool using 25 test administrations
per ability level, 40 item upper limit; stepsize = .693; and 8 = -3, -2,
-1, 0, 1, 2, and 3. Again, the mean number of items is indicated. These
results on LETIPL are somewhat more ambiguous although the extreme accep-
tance range values are clearly inferior to the more moderate values of

Table 8
Expected Values and Standard Deviations
from TREETIP on 25 Item Rectangular Pool
by Step Size and Acceptance Range

' Stepsize
Ability Acceptance -
Level Range 0.5 0.693 1.0 1.5
E(n) S0 E(o) S0 E(e) S0 E(n) S6
J -0.00 0.92 -0.00 0.84 -0.00 1.04 -0.01 1.07
2 -0.00 0.81 -0.02 1.01 -0.00 0.88 -0.00 1.06
0.0 .3 -0.00 0.74 -0.01 0.79 -0.00 0.83 -0.00 0.97
4 -0.00 0.76 -0.01 0.78 -0.00 0.81 -0.00 0.93
. 0.94 0.94 0,55 0.80 1.08 1.06 0.89 1.23
2 0.89 0.87 1.00 1.04 1.00 0.94 0.901.22
1.0 3 0.86 0.84 0.91 0.89 0.99 0.90 1.11 1.09
.4 0.94 0.81 0.96 0.83 1.00 0.89 1.10 1.07
. 1.89 0.97 0.97 0.66 2.09 1.03 1.99 1.45
.2 1.92 0.99 1.88 0.97 2.08 1.04 2.00 1.45
2.0 3 1.3 1,00 1.98 0.98 2.101.04 2.321.22
4 2.01 0.92 2.03 0.91 2.121.02 2.331.2]
. 2.76 0.88 1.21 0.46 2.93 0.93 3.09 1.39
.2 2.39 0.85 2.74 0.89 3.08 0.91 3.10 1.39
3.0 3 2.96 0.81 2,92 0.76 3.14 0.87 3.39 1.04
4 3.00 0.74 2.97 0 3.16 0.84 3.42 1.01

g2 G
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Tahle 9

Means and Standard Deviations

trort SIMIP on VCIPL Item Pool
Varying Acceptanpe Range

- - — TR e - . e e — ———

B et e ram mA e L ke e 4 e

Abili Level
Acceptance ‘ ty Le

Range

. v m-— - .

-3 -2 -1 0 7 IN 2 3

X -1.938 -1.713 -0.994 -0.491 1.101 1.873 2.913
Jd S, 0.430 0.794 0.573 0.810 0.976 0.676 0.447
iini* 3,64 5.56 6.84 8.52 11.12 9.72 6.24
K, -2.747 -2.133 -1.193 -0.152 1.208 2.268 2.889
2 S, 0.790 0.520 0.779 0.544 0.739 0.686 0.540
‘ni* 6.96 8.88 12.56 14.44 15,44 10.56 7.20
£, -2.955 -2.085 -1.311 -0.021 1.025 2 229 3.109
35 0.823  0.555 0.943 0.385 0.578 0.581 0.510
Mni* 7,00  10.00 11.24 16.96 17.24 12.96 7.68
£, =371 -2.408 -1.346 -0.007 0.869 2.234 2.950
A8 0.690 0.538 0.681 0.344 0.399 0.775 0.579
ni* 7,08 8.08 14.60 18.44 19.72 14.64 9.64
X, -3.157 -2.242 -1.051 0.160 0.941 2.340 3.117
5 S, 0.606 0.791 0.619 0.755 0.546 0.780 0.497
ini* 8.16  11.40 17.04 18.64 19.28 14.32 9.48

Note. A1l runs'made with 25 administrations per ability level, 20
item upper linit, and stepsize = ,693.
*Mni = mean number of iteus administered

.2 to 4. In cases such as this, one should consider a combination of
tne densit, of tae item pool across the range of 6 and whether a parti-
calar - range should be estimated more precisely than otners, in order
t) a2c1de on tne vest acceptance range value. Decisions regarding the
vot ovalae of )regran parareters cannot be nade independent of consider-
aL1ons Huct a5 tne Size and shape of the item pool to be used.

secondary rosults
WA Al AL A S LY

secondary results include the corparison of the performance of actual
vers s ddeal vters pools previcusly discussed. Table 11 shows this compari-
o, and overall, the ideal pool did not perforn much better than the
“i 1PL ool

Arother comparison was or tae SIMIP and TREL]P progranis on tne sare
<0015 wsine tue ame prograv parameter values . 5y “coking at Table 2
it Taole 6, an: ay see tnat the SIMIP did a reasonably good job of
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Means and Standard Deviations
from SIMIP on ETIPL Item Pool

Varying Acceptance Range

—— - - . A - - ——— e - ———

Abili N
Acceptance lity Level

Range
-3 -2 -1 0 1 2 3
?Q -2.528 -2.200 -1.174 -0.111 0.974 2.001 3.299
] 5. 0.559 0.667 0.700 0.569 0.903 0.471 0.78]1
Mni* 6.64 9.24 17.16 26.60 27.80 16.44 11.16
Tl -2.989 -2.159 -1.144 -0.016 0.926 2.152 3.45]
2 S, 0.49] 0.559 0.731 0.332 0.362 0.464 0.765
Mnix  7.20 14,52 22.40 - 31.60 33.60 22.36 13.40
X -3.103 -2.475 -1.162 0.003 1.016 2.161 3.024
.3 S” 0.576 0.594 0.630 0.239 0.401 92.410 0.747
iix 7,350 12.49 27.96 36.72 37.88 25.32 18.16
. -2.064 -2.3559 -1.121 -(.094 1.043 2.073 3.054
4 5, 0.615 0.315 0.582 0.261 0.316 0.336 0.520
Mni* 10,20 18.00 31.40 39.00 39.36 31.52 20.12
7} -3.378 -2.465 -1.088 0.031 0.993 1.920 3.195
D S 2.716 02.715 0.510 0.394 0.356 0.389 0.584
iy 10,24 13,48 35.08 39.80 33.48 325.12 20.75

“ote. £11 runs made with 25 administrations per ability level, 40
1temr upper 1imit, and stepsize = .693.
*'ny = : 2an number of items administered

anproxirating the TREETP results at & = 2 for the bimodal and skewed pools.
Also, fror Talle 6, it can be seen that increasing the number of tests
adninistered by the SIMIP did not dramatically change the means and stan-
adard deviations., Therefore, 25 administrations seemed adequate.

Finally, by comparing cells of Tables 7 and 10, one can See that
1ncreasing the raximun nuroer of items administered from 20 to 40 does
not saostantially change the imeans and standard deviations from the SIMIP.
Taa, cooparison is not exact because tne acceptance range of 0.25 used
tar analyses in Table 7 doés not precisely equal the value of 0.2 or 0.3
tor acceptance range in Table 10. MNeither is the stepsize of 0.7 in Table
S oexactly equal to 0.693 used in Table 10. However, the values seemed
Ciuse enouun to.make 1 comparison, and the result of this comparison seemed
to anficate that 20 iteis as ar upper limit was adequate. HNote that the
“wran nasber ot itens recorded in both tables illustrated that the proce-
tare approdadhied toe upper l1init in the middle range of .

cev B B
s o
[Py .
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- Table 11
Means and Standard Deviations from
SIMIF on ETIPL Item Pool and Comparable
[deal Item-Pgol

.
TR ST n et e e e - aree @ - g

Ability Level

e — e m i e > > . e o

—— . -
3

- - —

-3 -2 -1 0 ] 2 3
LTIPL X -3.061 0 -2075 0 -1:026 -0.065 1.029 1.950 2.913
Poyl 5 0.561 0.460 - 0.573  0.469 0.516 0.696 0.533
fdeal x| -3.036  -2.404  -1.037° -0.017 1.148 2.222 3.070
Pool S ,0.441 0.703  0.652  0.462 0.787 0.718 0.460

—— e e - m vie o —— e et -
ote. All runs riade with 25 administrations per ability level, 20
1ter: upver limit, stepsize = 0.70, and acceptance range = 0.25.

Discussion

+t should Le recalled that the basic emphasis of this study was to

+

Investidate the operational characteristics of a one-parameter tailored
testing procedure when the item poo]'attributes (shape and size) and

the prograr parameters (stepsize and acceptance range) were varied. In
so doing, suggestions regarding the most preferred item pool and program

varameter values were found based upon analyses of the tailored testing
frocedure’s arility estimate bias and standard error at various points

rlong the ability continuum,

This strategy for investigattng bijas and

Standard error was riotivated by the need to determine these values at
veveral Tlevels 'of - across the continuum, since overall efforts on the
project were directed toward developing a criterion-referenced tailored

test.
et oabviity
SNty aierg tne ability scale.
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in critorion referenced-testing, it is essential to identify effects
cattaate bias and standard erroron decisions made at several
Tne research presented here, which was
tadnteeine opticg] jtem

roal attributes and program paralieter;
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the continuurt. In this regard, one should view the estimates of true
ability +3.0 as understandably limited, in as much as the item pools did
not have any items beyond difficulty +3.0. For best estimation of ability,
the pool should have a dense uniform distribution of items around the
ability level to be estimated.

Item Pool Size

The methods employed for the investigation.of the effects of item
pool size on the operation of the one-parameter maximum 1ikelihood tailored
testing procedure were simulations, but theoretical methods have also been
proposed. Lord (1970) suggested a formula for the number of items required
tor a fixed stepsize procedure (selecting items more difficult by the

stepsize when correct responses were given and vice versa). The formula
is

N={(1+R/d) (n - R/2d) (2)

where +R is the range of item difficulties desired, d is the stepsize

and a submultiple of R, ard n is the maximum number of items to be admin-
istered. For example, if R were plus three to minus three, d were set

at 0.5, and n were twenty, the formula would give

119 = (1 + 3.0/0.5) (20 - 3.0/(2 X 0.5)). (3)

With this set of values, 119 items would be required if the exact item
requested were to be available.

This formula does not directly apply to some tailored testing proce-
dures which use a variable rather than a fixed stepsize. Also, most
testing procedures allow administration of slightly discrepant items from
those requested by the procedure (the acceptance range specified how dis-
crepant). Procedures using a variable stepsize tend to require more items
because, as the procedures converge to an ability estimate, the stepsize
1n eftect becomes smaller and smaller. Allowing items to be administered
1 ditfer slightly trom the requested item compensates to an extent

FCr the in rease in number of items caused by the variable stepsize.
another liritation of the formula is that several tailored testing procedures
adinaster atems until a specified precision is reached instead of using

1 preset maximum nunber of items as a stopping rule.

Another tneoretical method ot estimating how large an item pool should
(Uit 1975) is to determine the number of items required to reach
a specrtied precision of ability estimation, given that equally spaced,
verfe tly discriminating items are available., With these ideal or optimal
circurstances, the precision of an ability estimate is equal to the difference

between adjacent itens.  FPor example, an item pool with seven equally
spaced items trom -3.0 to +3.0 would classify examinees into categories
.0 scale unit apart.  The number of item responses required to make the

classiticatron would be

l()g?n (3)

D)
~ '
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in the tree diagram after k items are administered, By specifying the
precision desired, e, the rinimum item pool size can be determined by
the range of ability, R, divided by e, plus one. ¢ ;

nooo<—-+ | (4)

Ve mindn ue namoer ot 1tems administered to classify all ability levels
in the tailored testing situation is

k= log,Is + 11, (5)

Some results ovotained by the application of the formulas based on
tne theoretical method tor estimating the number of items needed in a
bool, given tne precision desired, have been indicated in Table 12. The
requirenents for pool size were computed for the range of ability, -3.5
to +3.5, given the desired class{fication interval size. As has been f N
pointed out, these results are for a rectangular pool of hypothetical
1tems with perfect discrimination and zero guessing probabilities. With
tnese restrictions, the iter pool sizes shown must be regarded as Tower
Timits. The ririrum session length indicates the fewest number of items
that «ould have tn be administered in order to classify an ability Tevel
within the cipabilities of the iten pool. These also are based on hypo-
thetically perfect items and item pools, and should be considered as lower
limits. The values in the column labelled simulated Tength are the number
of items required to reach a best estimate using the most Tikely response
pattern simulation. A1l results in this column are based on ¢ = 0.0.

Table 12
Minimum Item Pool Requirements
for a Rectanqular Idealized Pool Given
Classification Interval and Ability Range

At lgty Classitication Pool Minimum Simulated
Fdnge Interval Size Size Session Length Length*
-3, 5. ) 0c 15 3.9 2
R I 0.24 24 4.9 4
Vo) 0,124 55 5.8 8
-3Lh, A 0.0624 113 6.8 ¢
o, 3L 0,03 Jh 7.8 7
*I

steo Humber ot items sdministered to closest approximation of -
value within claseitication interval.

R Canes bhe sanuldated session length is less than the minimun
cedt Tt Tonagtn hecaio ot the Chovoe ot d(\',]lry level, Sett]ng the

™\
I
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stepsize equal to 0.693 tends to keep the process near the middle of the

item pool, speeding up convergence for abilities near 0.0. If an abjlitv .
of 3.0 had been used, the sessinn length for classification interval .5
would have been 6, well over the minimum predicted values. Thus, the mini-
mum session length refers to the number of items needed across the ability
range, and under specified circumstances fewer items may be required.

- These results using simulated tests have been compared to actual
tailored testing convergence plots and found to be fairly good approxi-
mations (Reckase, 1976). One observation of importance is that, from
convergence plots, it can be seen that giving too many easy items causes
bias in ability estimation. Reckase (1975) has discussed this effect
in detail.

Stepsize

The investigation of the stepsize program parameter suggests that
tor tailored testing procedures using a fixed stepsize prior to having
correct and incorrect responses in the examinee's response string, a value
in the range of .5 to 1.0 is most apt tg minimize ability estimate bias
and standard error. To determine the precise stepsize value to use when
setting up a tailored testing procedure, one should 100k carefully at
the distribution of item difficulty of the particular item pool to be
used. The testing procedure should select the first item from the middle
of the pool. This item may not coincide with the most informative item

for : = 0, since the median difficulty for the pool may not equal O,
Tne next step is to tentatively set the stepsize equal to 0.7 and deter-
: Tine whether items exist within the acceptance range at +1, +2, +3, and

*3 stepsizes away from the median difficulty item that the procedure
administered first. The purpose here is to avoid setting the stepsize

at a value which will induce ability estimates during initial testing ;
which will "fall through" the item pool (i.e. premature 'termination of
testing when no items exist within plus or minus the acceptance range of
the ability estirate). 1f the item difficulty distribution is uniformly
dense across the range of difficulty this will not pose much of a problem,

Another consideration when setting the stepsize value is to make
1t small enough to assure that items exist within an acceptance range of
*3 stepsizes away from the median difficulty item in the pool. This will
make the rinimum number of items that would be administered equal to &
*for those whoy get all the items right or ail the items wrong. Depending
‘on the above considerations, the stepsize value may be set lower or higher
tnan tne recommended 0.7. As can be seen, the item pool size and diffi-
culty distribution, acceptance range, and stepsize interact in determining
the adequacy of the testing procedure.

The reason for including 0,693 as a potentially optimal stepsize in
tnis study was that when the tirst Rasch procedure, using raw ability, was
Set up at the Hniversity of Missouri, a multiplicative stepsize equal to
T was used with good results. When the procedure was changed to operate
an log avility, an additive stepsize equal to 10gp2 seemed promising.
ims study suagests that indeed 10ge2 - 0.693 was justifiably chosen for
tne stepsize in the one-parameter tailored testing procedure.

l)'
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branches were terminated the standard deviation came down. Figure 4

illustrates this property of the TREE1P when it was run on the 61 item
rectangular pool with o set equal to zero, stepsize equal to 0.693, and
acceptance range equal to 0.30. This pattern of increasing standard
deviation of ability estimates during the early formulation of the pro-
pensity distribution was evident- for all shapes of the distributions of
items in the pools. :

However, the patterns of convergence to the final standard deviations
yielded by the TREEIP were different for the various shapes of item pools
at different ability levels. Tables 1, 2, and 3 show a general tendency
for the standard deviations of ability estimates of the true abilities
zero and one to be larger for the normal and bimodal pools than for the
rectangular pools. But for ability levels. two and three, the standard
deviations of ability estimates were generally larger for the rectangular
pools than for the normal and bimodal pools. This trend was consistent
across most of the TREEIP analyses. The explanation proposed was that,
because more items were available for administration to the more extreme
levels of ability (i.e. 8 = 2 and & = 3) when the rectangular pool was
used, the standard deviation of ability estimates was larger since the
standard error was more accurately estimated. The standard deviations
of the estimates from the normal and bimodal pools for these true ability
levels were smaller, since paths or branches were often terminated because
no items were available within the acceptance range of the estimated abilities.
In short, when fewer items yere in the pool around a particular true ability,
there were fewer paths allowed to develop in the propensity distribution
due to the stopping rules. Therefore, the standard deviation of ability
estimates at that particular level was an underestimate. A logical check
for this phenomenon was the predictior. that when the acceptance range
was made smaller, the drop in standard deviations for the more extreme
ability levels would be more pronounced with the normal pool than for the
rectangular. This did appear to be the case. The point is that the smaller
standard deviations for ability levels 2 and 3 yielded by the TREE1P when
normal or bTmodal pools were used probably should not be weighted too
heavily, as the tendency appears to be somewhat of an artifact of the
procedure. The values obtained for the rectangular pools may well be
more reglistic.

SIMIP was designed to score and administer items in the manner pre-
viously described based on the rationale that this approach was a reasonable
simutation of the behavior of an examinee when interacting with a tailored
test. The pseudo examinee with some specified true ability was presented
an item of a erage difficulty from the pool, because, given we have no
prior information about his ability, the best guess of an item appropriate
for the examinee was one of average difficulty. Scoring of each item
by determining the probability of a correct response using the examinee's
- in the one-parameter formula and then comparing this probability to a
random number selected from a rectangular distribution between zero and
one was deemed a reasonable simulation, assuming the one-parameter model
was correct. Clearly, the larger the probability of a correct response

\',) '}
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.was, the greater the chance was that the random number generated was
less than or equal to the probability specified by the model of a correct

response. However, there was ample provision for the reality that occasion- ©°
ally an examinee with adequate ability to answer an item correctly will
sti11 respond, incorrectly and conversely. While the probability of a
correct response was computed using the examinee's true 6, item selection
procedures %sed the fixed stepsize until correct and incorrect responses
were presenf, and then selected items maximizing information for the
estimated ability. This approach constituted the simulation of the inter-
action between examinee and tailored test with respect to the SIMIP.

o

Summary and Conclusions

It should be kept in mind that this report focused primarily on
program parameters and item pool attributes as they interacted with the
one-parameter maximum likelihood tailored testing procedure currently in
operation for this research project. Clearly, the inferences drawn from
the results should generalize to other tailored testing applications using
similar conceptual formulations of operation. In this sense, the results
of this'study were intended not as isolated studies of item pool size and
shape, stepsize magnitude, and value of the acceptance range, but rather
intended to generalize to fairly concrete statements about the preferred
operation of a one-parameter tailored testing procedure. As was expected,
item pool attributes and program parameters interacted to a great extent
in the determination of the degree of bias and amount of variance in
ability estimation. The intention in drawing up the numerous tables and .
figures of this report was to illustrate trends of interaction among these
variables. These trends, in large part, were the primary thrust of this
report. They should be helpful in applying tailored testing procedures
in which some of the variables, such as item pool attributes, have been
fixed by practicality. An important consideration when using actual item
pools is that calibration of actual items provides estimates of item
parameters. Often these parameters have been obtained from a linking
performed on several separate analyses in order to get larger samples and
therefore more stable estimates of the difficulty values. (For a discussion
of linking techniques see Reckase, 1979.) When implementing tailored
testing, it must be assumed that the estimates of item difficulties contain

minimal error. If this assumption is not met, obviously error will

be introduced into the ability estimates based on these estimates of item
parameters. At least two major concerns influence the error in parameter
estimates, sample size and factorial complexity of the test. For the
vast majority of analyses in this report the item parameters have been
assumed to be known,

In conclusion, this paper was intended as a guide for those setting
up a tailored testing procedure. The paper does not, by any means, exhaust
all the inferences that could be drawn from this set of data. The numerous
tables have been included with the intention that they might serve as
aides in guiding the development of one-parameter tailored testing systems.

L4



-31-

birnoaum, A, Some latent trait models and their use in inferring an
“xdiminee's ability, In F. M. Lord and M. R. Novick, Statistical
theories of mental test scores. Reading, MA: Addison-Wesley,

1968, °

Clirt, W, Personal Communication, Washinaton, D.C., June, 1975..

Junseita, O, J, Bayesiaﬁ tailored testing and the influence of item bank
~Characteristics. Paper presented at the Invitational] Conference
on Adaptive Testing, Washington, D.C., June, 1975.
» -3

~dy b Mo Some test theory for tailored testiné. In W. H. Holtzman
(td.), Computer-assisted instruction, testing, and guidance, New
vorv: Harper and Row, 1970.

vord, B.oM.oand Novick, M. R. Statistical theories of mental test scores.
neading, MA: Addison-Wesley, 1968.

Patience, W. M. Description of components in tailored testing. Behavior
Reswarch Methods and Instrumentation, 1977, 9(2), 153-157.

Yroe, SOMLand Weiss, D, J. A comparison of the fairness of adaptive
aiu conventional testing strategies (Research Report 78-T]. Minneapolis:
University of Minnesota, Department of Psychology, Psychometric
“tetnods Program, 1978. -

Recnase, M0 D0 An interactive computer program for tailored testing based
thte one-parameter logistic model. Behavior Research Methods and
iotrareptation, 1974, €(2), 208-212. :

wokrse Mo B The effect of item choice on ability estimation when
asdng 2 simple Togistic tadlored testing modeT. Paper presented
t'tor -rnugl Meeting of the American Fducational Research Association,
cdoteateny DUCL, March, 1975, (ERIC Document Reproduction Service
L Ide 342)

reveds e Ability estimation and item calibration using the one
1 e -parameter logistic modeTs: a comparative study (Research
ot 2T T CoTumbia University of Missouri, Department of

Cracitaaral Psychology, 1977.

S ot Ttem pool construction for use with latent trait models.
toorienented at the Annual Meeting of the American tducational

vt Ansociation, San Francisco, April, 1979,
'oov - lrateqgies of adaptive ability measurement. (Research Report
S cpartment of Psychology . University of Minnesota, Decemver,
RPN
st oo and Panchabai esan, 0, A procedure for sample-free item
bt bducational and Psychological Measurement, 1969, 29, 23-48.
24



14.
134
12+

FREQUENCY
A

Appendix A ~y

Figure A-1
Frequency Distribution
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